Conversion of phosphodiesterase-5 (PDE5) catalytic site to higher affinity by PDE5 inhibitors.

نویسندگان

  • Mitsi A Blount
  • Roya Zoraghi
  • Emmanuel P Bessay
  • Alfreda Beasley
  • Sharron H Francis
  • Jackie D Corbin
چکیده

Phosphodiesterase-5 (PDE5) specifically hydrolyzes cGMP, thereby contributing to modulation of intracellular levels of this nucleotide. In the present study, preincubation with cGMP increased PDE5 catalytic activity for cGMP degradation, and it converted the PDE5 catalytic site to a form that was more potently inhibited by each of the three PDE5 catalytic site-specific inhibitors: sildenafil, vardenafil, and tadalafil. These results implied that elevated cGMP initiates a physiological negative feedback on the cGMP pathway by increasing the affinity of the PDE5 catalytic site for cGMP. This increase in catalytic site activity or affinity for inhibitors could be caused by binding of cGMP to either the PDE5 allosteric sites, catalytic site, or both. Whether occupation of the catalytic site alone could mediate the effect was examined using radiolabeled PDE5 inhibitors in the absence of cGMP. Exchange-dissociation of [(3)H]sildenafil (Viagra), [(3)H]vardenafil (Levitra), or [(3)H]tadalafil (Cialis) from full-length PDE5 or isolated catalytic domain revealed two kinetic components (slow and fast). Extended preincubation of full-length PDE5, but not isolated catalytic domain, with (3)H inhibitors converted the biphasic pattern to a single slow (high-affinity) component. Studies of amino-terminally truncated PDE5 established that full-length mammalian GAF-B (cGMP-binding phosphodiesterase, Anabaena adenylyl cyclases, Escherichia coli FhlA) subdomain conjoined with the catalytic domain was sufficient for this conversion. In conclusion, binding of substrate or substrate analogs such as PDE5 inhibitors to the catalytic site converts a fast (low-affinity) inhibitor dissociation component of the PDE5 catalytic site to a slow (high-affinity) inhibitor dissociation component. This effect is predicted to improve the substrate affinity or inhibitory potencies of these compounds in intact cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization.

Phosphodiesterase-5 (PDE5) contains a catalytic domain (C domain) that hydrolyzes cGMP and a regulatory domain (R domain) that contains two mammalian cGMP-binding phosphodiesterase, Anabaena adenylyl cyclases, Escherichia coli FhlAs (GAFs) (A and B) and a phosphorylation site for cyclic nucleotide-dependent protein kinases (cNPKs). Binding of cGMP to GAF-A increases cNPK phosphorylation of PDE5...

متن کامل

Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (Type 5) by sildenafil and related compounds.

The cGMP-binding cGMP-specific phosphodiesterase (PDE5) degrades cGMP and regulates the intracellular level of cGMP in many tissues, including the smooth muscle of the corpus cavernosum of the penis. Sildenafil (Viagra), a specific PDE5 inhibitor, promotes penile erection by blocking the activity of PDE5, which causes cGMP to accumulate in the corpus cavernosum. In the present study, sildenafil...

متن کامل

Phosphorylation of phosphodiesterase-5 is promoted by a conformational change induced by sildenafil, vardenafil, or tadalafil.

Phosphodiesterase-5 (PDE5) inhibitors (sildenafil, vardenafil, or tadalafil) or phosphorylation by cyclic nucleotide-dependent protein kinase causes an apparent conformational change in PDE5, as indicated by a shift in migration on non-denaturing PAGE gels and an altered pattern of tryptic digestion. Combination of cGMP and a PDE5 inhibitor or phosphorylation does not cause a further gel shift ...

متن کامل

Phosphorylation increases affinity of the phosphodiesterase-5 catalytic site for tadalafil.

Phosphodiesterase-5 (PDE5) is phosphorylated at a single serine residue by cyclic nucleotide-dependent protein kinases. To test for a direct effect of phosphorylation on the PDE5 catalytic site, independent of cGMP binding to the allosteric sites of the enzyme, binding of the catalytic site-specific substrate analog [(3)H]tadalafil to PDE5 was measured. Phosphorylation increased [(3)H]tadalafil...

متن کامل

Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities.

In addition to its cGMP-selective catalytic site, cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains two allosteric cGMP-binding sites and at least one phosphorylation site (Ser92) on each subunit [Thomas, M.K., Francis, S.H. & Corbin, J.D. (1990) J. Biol. Chem. 265, 14971-14978]. In the present study, prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 323 2  شماره 

صفحات  -

تاریخ انتشار 2007